Advancing fine root research with minirhizotrons.

نویسندگان

  • M G. Johnson
  • D T. Tingey
  • D L. Phillips
  • M J. Storm
چکیده

Minirhizotrons provide a nondestructive, in situ method for directly viewing and studying fine roots. Although many insights into fine roots have been gained using minirhizotrons, a review of the literature indicates a wide variation in how minirhizotrons and minirhizotron data are used. Tube installation is critical, and steps must be taken to insure good soil/tube contact without compacting the soil. Ideally, soil adjacent to minirhizotrons will mimic bulk soil. Tube installation causes some degree of soil disturbance and has the potential to create artifacts in subsequent root data and analysis. We therefore recommend a waiting period between tube installation and image collection of 6-12 months to allow roots to recolonize the space around the tubes and to permit nutrients to return to pre-disturbance levels. To make repeated observations of individual roots for the purposes of quantifying their dynamic properties (e.g. root production, turnover or lifespan), tubes should be secured to prevent movement. The frequency of image collection depends upon the root parameters being measured or calculated and the time and resources available for collecting images and extracting data. However, long sampling intervals of 8 weeks or more can result in large underestimates of root dynamic properties because more fine roots will be born and die unobserved between sampling events. A sampling interval of 2 weeks or less reduces these underestimates to acceptable levels. While short sample intervals are desirable, they can lead to a potential trade-off between the number of minirhizotron tubes used and the number of frames analyzed per tube. Analyzing fewer frames per minirhizotron tube is one way to reduce costs with only minor effects on data variation. The quality of minirhizotron data should be assessed and reported; procedures for quantifying the quality of minirhizotron data are presented here. Root length is a more sensitive metric for dynamic root properties than the root number. To make minirhizotron data from separate experiments more easily comparable, idiosyncratic units should be avoided. Volumetric units compatible with aboveground plant measures make minirhizotron-based estimates of root standing crop, production and turnover more useful. Methods for calculating the volumetric root data are discussed and an example presented. Procedures for estimating fine root lifespan are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.

Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to qua...

متن کامل

ESTIMATES OF FACTORS DIRECTLY RELATED TO FINE ROOT LONGEVITY USING A HIERARCHICAL BAYESIAN MODEL by

Fine root longevity, measured using minirhizotrons, range from days to years (Hendrick & Pregitzer, 1992; Eissenstat et al., 2000). Although there are several hypotheses that relate to root tissue lifespan (Ryser, 1996), very few long-term studies have examined the factors that may be directly related to survivorship of individual roots. It is known that atmospheric CO2, which is the major gree...

متن کامل

3D Quantification of Plant Root Architecture In Situ

Root systems play important roles in plant nutrient and water uptake. The spatial distribution and structure of root systems can affect many physiological functions, carbon distribution, and plant anchorage. The accurate measurement of root systems is necessary for better understanding of plant growth and responses to biotic and abiotic stress. Due to their underground growth habitat, root syst...

متن کامل

Predicting fine root lifespan from plant functional traits in temperate trees.

Although linkages of leaf and whole-plant traits to leaf lifespan have been rigorously investigated, there is a limited understanding of similar linkages of whole-plant and fine root traits to root lifespan. In comparisons across species, do suites of traits found in leaves also exist for roots, and can these traits be used to predict root lifespan? We observed the fine root lifespan of 12 temp...

متن کامل

Soil incorporation of logging residue affects fine-root and mycorrhizal root-tip dynamics of young loblolly pine clones.

Loblolly pine (Pinus taeda L.) plantations cover a large geographic area of the southeastern USA and supply a large proportion of the nation's wood products. Research on management strategies designed to maximize wood production while also optimizing nutrient use efficiency and soil C sequestration is needed. We used minirhizotrons to quantify the effects of incorporating logging residues into ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental and experimental botany

دوره 45 3  شماره 

صفحات  -

تاریخ انتشار 2001